
Accounting for Outside Options in Discrete Choice Models:
An Application to Commercial Fishing Effort

Tess M. Stafford∗

March 27, 2016

Abstract

Discrete choice models often feature a generic outside option that combines all alternatives
other than those of particular interest to the researcher, which allows overall demand for the
alternatives of interest to be captured. I demonstrate that combining diverse alternatives into a
single outside option can result in distorted parameter estimates and misleading predictions. To
evaluate the practical importance of how outside options are treated, I use data on the Florida
spiny lobster and stone crab fisheries to compare a discrete choice model that explicitly accounts
for individuals’ ability to target both species with one that includes stone crab alternatives in
the generic outside option. I find that parameter estimates and predictions for the lobster fishery
depend heavily upon whether stone crab alternatives are explicitly accounted for. In addition,
I conduct a series of Monte Carlo experiments, which demonstrate that the sign and magnitude
of differences in predictions between models are complex functions of the characteristics of the
empirical environment. Together, these results highlight the importance of carefully considering
the composition of outside options when estimating discrete choice models and making predic-
tions based on the estimates. (JEL Q22, C23, and C25)

Keywords: discrete choice models; outside option; participation and location choices; commer-
cial fisheries; multi-species

∗Department of Economics, The University of New South Wales, Kensington NSW 2052, Australia. Acknowledge-
ments: Many thanks to Scott French, Chris Anderson, Frank Asche, Denzil Fiebig, Alan Haynie, James Morley, Marty
Smith, and Jim Wilen. I would also like to thank seminar participants at the University of New South Wales and con-
ference participants at the AERE Summer Conference, WCERE, NAAFE Forum, and IIFET Conference. I gratefully
acknowledge the Florida Fish and Wildlife Conservation Commission for providing data and the National Marine
Fisheries Service and National Sea Grant Office for providing funding. Contact the author at t.stafford@unsw.edu.au
or +61 2 9385 4187.

1
© 2017 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S009506961730743X
Manuscript_b3de50858587b85de24397e9d63b4edc

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S009506961730743X
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S009506961730743X


Accounting for Outside Options in Discrete Choice Models:
An Application to Commercial Fishing Effort

Abstract

Discrete choice models often feature a generic outside option that combines all alternatives
other than those of particular interest to the researcher, which allows overall demand for the
alternatives of interest to be captured. I demonstrate that combining diverse alternatives into
a single outside option can result in distorted parameter estimates and misleading predictions.
To evaluate the practical importance of how outside options are treated, I use data on the
Florida spiny lobster and stone crab fisheries to compare a discrete choice model that explic-
itly accounts for individuals’ ability to target both species with one that includes stone crab
alternatives in the generic outside option. I find that parameter estimates and predictions for
the lobster fishery depend heavily upon whether stone crab alternatives are explicitly accounted
for. In addition, I conduct a series of Monte Carlo experiments, which demonstrate that the
sign and magnitude of differences in predictions between models are complex functions of the
characteristics of the empirical environment. Together, these results highlight the importance of
carefully considering the composition of outside options when estimating discrete choice models
and making predictions based on the estimates. (JEL Q22, C23, and C25)
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I Introduction

Discrete choice models have become widely used to study individuals’ selection among finite sets

of alternatives. These models provide a tractable framework in which to estimate the drivers of

agents’ decision-making and allow researchers to make behavioral and welfare predictions. Often,

the researcher is interested in choices over a subset of all possible alternatives, due to the aim of the

study or due to data availability. However, if the researcher is interested in whether agents choose

any of the alternatives of interests, then the choice set must include all possible alternatives, not

just those of particular interest. This is typically accomplished by combining all other alternatives

into a generic outside option.1 This is the case in analyses spanning many areas of study, such as

product demand (Berry, Levinsohn and Pakes (1995)), energy conservation (Cameron (1985) and

Allcott and Wozny (2014)), recreational demand (Morey, Rowe and Watson (1993)), and commercial

fishing effort (Smith (2002) and Smith and Wilen (2003)).

In this paper, I demonstrate that it is important to carefully consider the composition of agents’

outside options when estimating discrete choice models and making predictions based on the esti-

mates. When alternatives are combined to form a single outside option, they are implicitly treated

as identical alternatives, regardless of their similarity to one another or their similarity to other

explicitly-modeled alternatives. This can result in misleading parameter estimates and predictions

for a number of reasons. First, outside options are made observationally equivalent by homogenizing

alternative-specific characteristics. Second, variables are constrained to have identical effects on all

alternatives contained in the outside option. In addition to biasing parameter estimates, these issues

can distort estimated substitution patterns between choices that are explicitly modeled, particularly

when some of the alternatives contained in the outside option share commonalities with modeled

alternatives. Third, the set of policy predictions that the researcher is able to consider is limited to

those policies that affect only explicitly-modeled alternatives.

I examine the quantitative effects of these issues in the context of a discrete choice model
1For example, in estimating the determinants of demand for differentiated automobile models, not purchasing an

automobile must be included in the choice set in order to allow overall demand for automobiles to depend on variables
such as prices.
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of commercial fishing effort. I consider a case in which the researcher is interested in modeling

participation and location choice in the Florida spiny lobster fishery. In addition to fishing for

lobsters, fishermen may engage in a number of other activities, and the researcher must determine

how to characterize these outside options. I consider two characterizations. In the first, which

I label the “naive” benchmark model, I combine all other possible activities into a single outside

option. Many individuals that participate in the lobster fishery also participate in the stone crab

fishery. Thus, in the second, which I label the “true” model for expositional purposes, I explicitly

model both lobster and stone crab alternatives, and I combine all remaining activities into a generic

outside option. Because stone crab alternatives are combined with all other activities in the naive

model, values of alternative-specific variables, such as revenues and costs, are implicitly set to zero

for stone crab alternatives, and other variables, such as weather, are constrained to affect stone crab

fishing in the same manner that they affect all other outside options. Given that stone crab fishing

is almost certainly more similar to lobster fishing than to non-fishery activities, these restrictions

are likely to produce biased parameter estimates and misleading policy predictions.

I find that estimated marginal effects differ substantially in magnitude, and the predicted effects

of policy changes differ both in magnitude and, in some cases, the direction of the effect. Specifically,

using the fitted models, I simulate the effect of marine reserve establishment (area closures) – an

increasingly popular regulatory tool – on total effort and the distribution of effort in the lobster

fishery. When areas are closed to the lobster fishery only, both models necessarily predict a decrease

in overall lobster fishing effort. However, the magnitude of the predicted response differs between

models by more than 50%. When areas are closed to both fisheries, in some instances, the true

model predicts an increase in overall lobster fishing, a result that is ruled out by the naive model.

The increase in lobster fishing effort arises because individuals that had chosen to fish for stone crab

in a now-closed area find it optimal to fish for lobster in a still-open area. The propensity to target

another species in response to area closures cannot be captured by the naive model. As a result,

the naive model predicts a decrease in lobster trips.

To determine the extent to which the empirical results depend on the specifics of the lobster
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and stone crab fisheries, I conduct a series of Monte Carlo experiments. In these experiments,

I vary characteristics of the choice environment and evaluate how variations affect estimates and

predictions of the misspecified model. This exercise reveals that both the sign and magnitude of

biases in estimates and predictions are heavily dependent on the choice environment. While the

relationships between characteristics and biases are, to a large extent, predictable, it is not straight-

forward to forecast the sign and magnitude of biases when a number of characteristics interact.

The empirical results and Monte Carlo analysis suggest that researchers and practitioners should

explicitly model choices closely related to the decisions of interest whenever possible and, when

not possible, carefully consider the potential biases introduced by pooling such choices with other

outside options.

The treatment of outside options is not an issue that is limited to discrete choice applications. In

demand analysis, the researcher is typically interested in modeling demand for a subset of goods and

must decide how to treat all remaining goods. Several strategies have been developed to cope with

this issue. If the goods of interest enter preferences through a weakly separable function, demand

for these goods may be modeled conditional on total expenditures allocated to these goods. Alter-

natively, if the prices of goods not modeled vary proportionally across observations, the researcher

may aggregate these goods into a single Hicksian composite good and model demand for the goods

of interest as a function of own prices, the composite good price, and income. In most empirical ap-

plications, including the one studied here, the researcher will find the assumptions required to apply

these methods too restrictive. A third option, the incomplete demand system approach, developed

in Epstein (1982) and further analyzed in LaFrance and Hanemann (1989) and von Haefen (2002),

involves modeling demand for the goods of interest as a function of own prices, all remaining goods

prices, and income. A number of studies have used this approach to estimate recreation demand

models.2

Although appealing, the incomplete demand system approach is not well-suited for discrete

choice applications. When a good is not consumed, it is not the observed market price for the
2See, e.g., Eom and Larson (2006) and Phaneuf, Carbone and Herriges (2009).
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good that influences choices, but the price that would drive demand to zero (the “virtual” price),

which is not observed by the researcher. A correctly specified incomplete demand system includes

observed prices for goods that are consumed and virtual prices for goods that are not consumed.

Although methods have been developed to consistently estimate complete demand systems when

corner solutions are present, no feasible method currently exists for incomplete demand systems (von

Haefen, 2010). Moreover, von Haefen (2010) demonstrates that biases in welfare estimates can be

quite large when observed market prices are used in place of virtual prices in an incomplete demand

system with corner solutions. Because discrete choice problems necessarily involve a multitude of

corner solutions, these biases are likely to be exacerbated in such settings.

This study contributes to a broader literature on choice set formation in discrete choice models

that is devoted to understanding the implications of theoretical assumptions and practical conces-

sions made by analysts when defining choice sets. An important theoretical decision faced by the

analyst is determining the appropriate scope of individuals’ choice sets, which requires identifying

reasonable and relevant substitutes. Jones and Lupi (1999) investigate the consequences of expand-

ing the choice set to include additional “reasonable” substitute activities. For a number of reasons,

such as lack of information or prohibitive cost, the set of alternatives considered by an individual

when making a choice may not consist of the universe of available alternatives. This observation has

lead a number of researchers to investigate the consequences of including “irrelevant” alternatives

in the choice set. Peters, Adamowicz and Boxall (1995), Adamowicz et al. (1997), and Hicks and

Strand (2000) consider the case in which individuals may not be familiar with all alternatives and

use survey data to identify and remove unfamiliar alternatives from individuals’ choice sets. Parsons

and Hauber (1998) and Banzhaf and Smith (2007) study choice in settings with a spatial dimension

and consider the case in which alternatives beyond a certain distance cease to be considered by

the individual. Carson and Louviere (2014), however, argues that truncating the choice set creates

selection bias if the consideration set formation process is endogenous and urges analysts to model

the process by which consideration sets are formed together with the choice process. A number of

papers follow this approach. Based on Manski (1977), Haab and Hicks (1997), von Haefen (2008),
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Hicks and Schnier (2010), Li, Adamowicz and Swait (2015), and Thiene, Swait and Scarpa (2017)

consider the case in which these processes are separable and independent. Horowitz and Louviere

(1995) and Swait (2001) consider the case in which utility determines both consideration sets and

choices. Rather than assume irrelevant (in this case unfamiliar) alternatives are excluded from

the consideration set, Parsons, Massey and Tomasi (1999) allows for different utility functions for

alternatives deemed familiar and unfamiliar. My paper is most similar to Jones and Lupi (1999)

in that I consider the treatment of “reasonable” alternatives. A key distinction is that I evaluate

the consequences of pooling such alternatives into a composite outside option rather than omitting

them from the choice set entirely.

An important practical issue faced by the analyst is the computational burden associated with

large choice sets. One solution to this problem is to aggregate sets of alternatives. Parsons and

Needelman (1992), Feather (1994), and Kaoru, Smith and Liu (1995) caution against this practice

and suggest that, when aggregation is necessary, the estimation adjust for the number of alterna-

tives that have been aggregated and for the level of heterogeneity among aggregated alternatives.

Lupi and Feather (1998) and Parsons, Plantinga and Boyle (2000) investigate the use of “partial”

aggregation whereby alternatives assumed to be less relevant are aggregated in a meaningful way

while alternatives assumed to be more relevant remain disaggregated. Based on McFadden (1978),

Parsons and Kealy (1992) argue that when the choice set must be reduced for computational rea-

sons, it is better to draw a random subset of all possible alternatives than to aggregate alternatives

into fewer distinct choices. My paper contributes to this literature by characterizing the biases in

parameter estimates and predictions of a particular form of aggregation that is common in practice:

combining diverse alternatives into a generic outside option.

This paper also contributes to the literature using discrete choice models to better understand

and manage commercial fisheries, beginning with Bockstael and Opaluch (1983). Over the years,

researchers have extended and adapted the multinomial logit model of Bockstael and Opaluch (1983)

to study a number of aspects of harvester behavior, including location and participation decisions,3

3See, e.g., Eales and Wilen (1986), Mistiaen and Strand (2000), Smith (2005), Hicks and Schnier (2006), Hicks
and Schnier (2008), Haynie, Hicks and Schnier (2009), Haynie and Layton (2010), Abbott and Wilen (2010), Abbott
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temporal dependency,4 and complex forms of individual heterogeneity.5 The species target decision,

however, has remained a largely overlooked aspect of behavior.6 I explore the importance of this

dimension of choice and show that omitting it from the model can lead to misleading predictions of

the effects of commonly-considered policies, such as the establishment of marine reserves.

The following section lays out a discrete choice framework that typifies models common in the

commercial fishing literature, making clear the distinction between a model that explicitly formulates

the species target decision and one that includes secondary species in the outside option. In Section

III, I estimate these models using data from the Florida spiny lobster and stone crab fisheries, and I

discuss the important differences in the estimates and policy implications of the two models. Section

IV presents the results of the Monte Carlo experiments, and the final section discusses the overall

implications of my findings.

II Discrete Choice Models of Fishing Effort

In this section, I describe how participation, species target, and location decisions may be modeled in

a three- and two-dimensional nested logit framework. While much of the derivation of these models

will be familiar to the reader, this facilitates a comparison of models and lays the foundation for

the empirical application and Monte Carlo experiments.

II.A Three-Dimensional Nested Logit

Consider an environment where, on each choice occasion (t = 1, 2, ..., T ), individuals (i = 1, 2, ..., I)

make a participation decision, p ∈ {0, 1}, a species target decision, s ∈ {0, 1, 2, ..., S}, and a location

decision, j ∈ {0, 1, 2, ..., J}, where 0 denotes non-participation at each stage of the decision process.

Define an alternative, psj, as an outcome arising from a particular combination of decisions. If

individuals are able to target each species in each location, the choice set consists of S J + 1

and Wilen (2011), Smith, Zhang and Coleman (2008), Smith (2002), Smith and Wilen (2003), Kahui and Alexander
(2008), and Smith, Sanchirico and Wilen (2009).

4See, e.g., Hicks and Schnier (2006), Hicks and Schnier (2008), and Smith (2005).
5See, e.g., Mistiaen and Strand (2000), Smith (2005), and Haynie, Hicks and Schnier (2009).
6Although a few studies have incorporated this dimension of choice – see, e.g., Bockstael and Opaluch (1983),

Holland and Sutinen (2000), Curtis and Hicks (2000), and Zhang and Smith (2011) – to my knowledge, none have
examined how doing so affects estimates and policy predictions, which is the focus of my paper.
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alternatives. Each alternative provides the individual with some amount of utility, Upsjit, which may

depend on the characteristics of the alternative, individual, or choice occasion. A random utility

model specifies the utility associated with each alternative-individual-choice occasion as consisting

of a deterministic component, which is known by the researcher up to some parameters, and an

additive random component, which is not known by the researcher:

Upsjit = Ṽpsjit + ε̃psjit. (1)

On each choice occasion, individuals select the alternative that provides the greatest utility among all

possible choices. Although utility is not fully observed by the researcher, she can make probabilistic

statements about the decision maker’s choice. The functional form that these choice probabilities

take depends on assumptions regarding the joint probability distribution of the random components.

In the fisheries literature, the most common formulations for discrete choice probabilities are

multinomial logit7, nested logit8, mixed logit9, and discrete choice dynamic programming10. Multi-

nomial logit, which arises under the assumption that the error terms, ε̃psjit, are independently and

identically Gumbel distributed, is the simplest and easiest to estimate. However, this formulation

imposes that relative choice probabilities remain invariant to changes in the choice set. This restric-

tion – the well-known and often inappropriate assumption of independence of irrelevant alternatives

(IIA) – is particularly problematic in a fisheries context where the researcher hopes to uncover

how relative probabilities change as policies alter the choice set. Although mixed logit and discrete

choice dynamic programming offer a number of advantages, including relaxing the IIA assumption,

the complexities of these models are unnecessary to convey the point of this paper. Instead, I adopt

a nested logit framework, which is intuitively appealing, partially relaxes the IIA assumption, is

computationally efficient, and, for these reasons, is a popular choice among fisheries economists.

The nested logit model permits a specific type of correlation structure in unobserved utility by
7See, e.g., Bockstael and Opaluch (1983), Eales and Wilen (1986), Abbott and Wilen (2010), and Abbott and

Wilen (2011).
8See, e.g., Morey, Rowe and Watson (1993), Holland and Sutinen (2000), Smith (2002), Smith and Wilen (2003),

and Kahui and Alexander (2008).
9See, e.g., Mistiaen and Strand (2000), Smith (2005), and Haynie, Hicks and Schnier (2009).

10See, e.g., Hicks and Schnier (2006), and Hicks and Schnier (2008).
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allowing researcher-specified groups and sub-groups of alternatives to share common error compo-

nents. When the choice set is multi-dimensional, it is natural to group alternatives that share a

common element along one or more dimensions. To make assumptions clear, rewrite (1) as

Upsj = Vp + Vs + Vj + Vps + Vpj + Vsj + Vpsj

+ εp + εs + εj + εps + εpj + εsj + εpsj ,
(2)

where the composite deterministic and error terms have been decomposed into portions that vary

over each dimension and combination of dimensions of choice, and I have dropped individual- and

time-subscripts to simplify notation. In this setting, when p = 0 the choice set consists of a single

alternative, so (2) reduces to

Upsj = Vp + Vps + Vpj + Vpsj + εp + εps + εpj + εpsj . (2′)

While, in reality, all of the error components in (2′) may have positive variance, the nested logit

model is only able to accommodate a subset of these possibilities. To meet these requirements, I

assume that var(εpj) = 0, which is equivalent to assuming that there are no unobserved location-

specific, species-invariant “shocks” to utility. In addition, I make the following assumptions:

• Error components, εp, εps, and εpsj , are independent for all p, s, and j;

• Composite errors, εp + εps + εpsj , are i.i.d. Gumbel with scale parameter λ > 0, which I

normalize to 1;

• Composite sub-nest errors, εps + εpsj , are i.i.d. Gumbel with scale parameter λp ∈ [0, 1]; and

• Idiosyncratic errors, εpsj , are i.i.d. Gumbel with scale parameter λps ∈ [0, λp].

Under these assumptions, marginal and conditional choice probabilities are given by

Pr(p) =
exp{Vp + λpIp}∑

p′∈P
exp{Vp′ + λp′Ip′}

, (3)

Pr(s ∈ Sp|p) =
exp{(Vps + λpsIps)/λp}∑

s′∈Sp

exp{(Vps′ + λps′Ips′)/λp}
, and (4)
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Pr(j ∈ Jps|ps) =
exp{(Vpsj + Vpj)/λps}∑

j′∈Jps
exp{(Vpsj′ + Vpj′)/λps}

, (5)

where the “inclusive value” or “log-sum” for nest p is given by Ip = ln
∑

s∈Sp
exp{(Vps+λpsIps)/λp},

and the inclusive value for sub-nest ps is given by Ips = ln
∑

j∈Jps exp{(Vpsj +Vpj)/λps}. Assuming

decisions are independent across individuals and time, the likelihood function is given by

L (β,λ) =
∏
i∈I

∏
t∈T

∏
psj∈Cit

[Prit(j ∈ Jps|ps) ∗ Prit(s ∈ Sp|p) ∗ Prit(p)]ypsjit , (6)

where β denotes the vector of parameters associated with the deterministic component of utility

(Ṽ ), λ denotes the vector of scale parameters associated with the random component of utility (ε̃),

and ypsjit = 1 if fisherman i chose alternative j ∈ Jps on choice occasion t and zero otherwise.

Under fairly general conditions, the values of β and λ that maximize this function are consistent

and efficient estimates of the true parameters (Brownstone and Small, 1989).

II.B Two-Dimensional Nested Logit

If decisions to fish for secondary species are unobserved or otherwise ignored, these decisions are

classified, at least implicitly, as non-participation. The choice set is reduced to J + 1 alternatives,

and it becomes redundant to index alternatives by both p and s. Using p to denote the (modified)

participation dimension, (2′) collapses to

Upj = Vp + Vpj + εp + εpj . (2′′)

To be consistent with the nested logit model, the error components in (2′′) are assumed to meet the

following conditions:

• Error components, εp and εpj , are independent for all p and j;

• Composite errors, εp + εpj , are i.i.d. Gumbel with scale parameter λ > 0, which I normalize

to 1; and

• Idiosyncratic errors, εpj , are i.i.d. Gumbel with scale parameter λp ∈ [0, 1].
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Under these assumptions, marginal and conditional nested logit choice probabilities are given by

Pr(p) =
exp{Vp + λpIp}∑

p′∈P
exp{Vp′ + λp′Ip′}

(7)

and

Pr(j ∈ Jp|p) =
exp{Vpj/λp}∑

j′∈Jp
exp{Vpj′/λp}

, (8)

where Ip = ln
∑

j∈Jp exp{Vpj/λp}. Assuming decisions are independent across individuals and time,

the likelihood function is given by

L (β,λ) =
∏
i∈I

∏
t∈T

∏
pj∈Cit

[Prit(j ∈ Jp|p) ∗ Prit(p)]ypjit , (9)

where ypjit = 1 if fisherman i chose alternative j ∈ Jp on choice occasion t and zero otherwise.

It is important to note that, although more flexible, the three-dimensional model does not nest

the two-dimensional model. When decisions to fish for secondary species are classified as non-

participation, the data and model are modified significantly. First, the size of the choice set is

reduced considerably. This not only affects estimation, but limits the set of policies the researcher

is able to analyze to those that affect the primary species only. Second, the characteristics that

describe secondary species alternatives are implicitly replaced with the characteristics that describe

non-fishery participation. For example, values of location-specific explanatory variables, such as

revenues and costs, are set to zero for secondary species. Third, the parameters in (2′′) are implicitly

constrained to be equal for non-participation and stone crab alternatives. For example, variables

such as weather conditions are constrained to affect utilities associated with stone crab fishing in

the same way that they affect utilities associated with not fishing. Importantly, these issues are not

specific to the nested logit model and will present problems in other discrete choice formulations as

well. Thus, it is clear that the two-dimensional model is misspecified when individuals are able to

target more than one species. The question that remains is whether these restrictions have sizable

effects on parameter estimates and policy forecasts.
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III Empirical Application

To test the implications of the model misspecification described in the previous section, I estimate

the three- and two-dimensional nested logit models described in sections II.A and II.B, respectively,

on data from the Florida spiny lobster and stone crab fisheries.

III.A Industry Characteristics

Spiny lobsters (panulirus argus) are warm-water clawless lobsters found in the western Atlantic

waters from North Carolina to Brazil. Commercial trap fishermen in southern Florida are typically

responsible for 60 − 80% of annual U.S. spiny lobster landings. I focus my analysis on this group

of fishermen. Many of these fishermen also participate in the Florida stone crab fishery. Like

lobsters, stone crabs are abundant in southern Florida, which enables fishermen to target either

species from the same port. Because stone crabs are also harvested by trap, fishermen use much of

the same capital and labor – e.g. vessel, hydraulic trap puller, and crew – to harvest both species,

which enables fishermen to easily switch between fisheries on a daily basis. Still, local habitats

are distinct, and fishermen use different traps to harvest each species. So, while fishermen can

target either species on a given day, they do not typically target both species on the same day.

Although the lobster and stone crab fisheries are subject to a number of regulations, such as size

limits, there are no individual, location-specific, or fishery-wide quotas in either fishery. Fishermen

are permitted to fish for either species as often as they wish and wherever they wish, provided they

hold the appropriate permits, the season is open, and the location is not closed to fishing.11

Since 1978, the Florida Fish and Wildlife Conservation Commission (FWC) has required dealers

(buyers) to fill out a Marine Fisheries Trip Ticket for each commercial purchase of marine life.

Among other things, trip tickets record the dealer’s and seller’s unique license numbers, the date

of the trip, the quantity and unit price of each species sold, and the location of the trip, classified

as one of eighteen statistical areas spanning the coast of Florida. The FWC has provided me with

all trip ticket records from 1996 through 2007 that record any amount of lobster sold as well as
11The lobster fishery is open from August 6 until March 31, and the stone crab fishery is open from October 15

until May 15. I study the decisions made by lobster trap fishermen during the lobster season. Hence, stone crab
alternatives are not included in the choice set between August 6 and October 14.
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all remaining trip tickets associated with this group of fishermen. These data allow me to observe

when fishermen participate, what they catch, and where they fish. Using these data, I determine the

primary species targeted by each fisherman on each day, and I extract the population of lobster trap

fishermen from the universe of individuals that ever sold lobster. Details on this process are provided

in appendix A. To reduce computing requirements, I focus my analysis on the five southernmost

statistical areas in Florida, which account for roughly 95% of all lobster and stone crab landings,

and I drop all trips with landings outside these areas as well as all fisherman-season pairs during

which the fisherman made a trip outside these areas.12 Further discussion is provided in appendix

A, and a map of statistical areas is provided in appendix B.

Table 1 describes the sample of commercial lobster trap fishermen and the distribution of effort

across species and locations. The sample includes 840 commercial lobster trap fishermen and 2,859

open season days. Commercial lobster trap fishermen participate in the lobster fishery 17.5% of the

time and the stone crab fishery 5% of the time. There are large differences in the number of trips

made to each location and in the spatial distribution of effort between species. For example, Area 5

is the most visited location in both fisheries, accounting for approximately 44% of all lobster trips

and stone crab trips. However, while Area 3 ranks third in total stone crab trips, it ranks last in

total lobster trips. This heterogeneity is a source of the interesting differences in policy forecasts

between the two- and three-dimensional models that I present below.

Since treatment of the outside option is the focus of this paper, a discussion of its composition

in this application is warranted. An obvious concern is whether the outside option includes fishing

for species other than lobster and stone crab, which would introduce the type of misspecification

that I seek to avoid. Fortunately, I observe every fishing trip made by lobster fishermen and the

composition of each trip. All trips can be reasonably classified as lobster or stone crab trips (see

appendix A) and lobsters and stone crabs comprise 99.6% of the total value of all species sold by

fishermen in my sample, which strongly suggests that the outside option for these individuals does

not include fishing for other species in any meaningful way. Still, the outside option may include
12Results are virtually identical when I retain these fisherman-season pairs.
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Table 1: Sample Size and Distribution of Effort

Lobster Stone Crab

Number Percentage Number Percentage

Trips taken
Area 1 45,852 4.29 15,557 1.46
Area 2 15,992 1.50 1,253 0.12
Area 3 4,788 0.45 8,963 0.84
Area 4 37,840 3.54 4,010 0.38
Area 5 82,326 7.71 23,510 2.20
Total 186,798 17.50 53,293 4.99

Fishermen in sample 840
Open season days 2,859
Total choice occasions 1,067,636

Note.— Not all fishermen participate in the lobster fishery every season, so the
number of choice occasions is smaller than the product of the number of fishermen in
the sample and the number of open season days. See appendix A for details on how the
sample is constructed.

other substitute activities, such as recreational fishing or other forms of employment. Unfortunately,

I do not have information on non-commercial fishing activities and so cannot test or control for this

possibility, which is a caveat of the empirical analysis. Despite this caveat, we can still learn about

the importance of the composition of the outside option by comparing models that explicitly include

stone crab fishing with models that do not.

III.B Model

To aid discussion, I slightly modify notation in the empirical application. On each open sea-

son day, fishermen make a participation decision, p ∈ {no, fish}, a species target decision, s ∈

{neither, lobster, crab}, and a location decision, j ∈ {0, 1, 2, 3, 4, 5}, where no, neither, and 0 reflect

non-participation at each stage of the decision process. In this application, individuals are able to

target both species in all locations, so the choice set consists of eleven alternatives.

I assume that the utility that fisherman i receives from selecting alternative psj on day t is

a linear function of an alternative-specific constant, alternative-invariant and alternative-specific

variables, and a component that is unobserved by the researcher:

Upsjit = αpsj +Xitβp + Zpsjitγ + ε̃psjit. (10)
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Figure 1: Nested Logit Decision Trees

Alternative-invariant variables, X, consist of (i) temporal variables, which include a set of fishing

season indicators, a set of month indicators, and indicators for Saturday and Sunday to capture

weekend work preferences; and (ii) weather variables, which include indicators for moderate (15−20

miles per hour) and high wind speeds (20+ mph). I allow alternative-invariant variables to affect

utilities associated with participation differently than utilities associated with non-participation,

and I normalize βno to zero. Alternative-specific variables, Z, include (i) location-specific costs,

for which I use distance from port (measured in miles) as a proxy; and (ii) location- and species-

specific expected daily revenue (measured in $s/trap). I set values of Z to zero for non-participation.

Details on how weather, distance, and revenue variables are constructed are provided in appendix

C. I assume unobserved components, ε̃psjit, meet the requirements laid out in section II.A, and

I normalize λ to one. For expositional purposes, I refer to this model as the “true” model. The

structure of this model is illustrated in Figure 1.

Table 2 presents summary statistics on key variables. To generate these statistics, I first calculate

participation rates for each open season day in the sample. I then take a weighted average over all

days sharing the same characteristic, weighting daily values by the number of fishermen participating

that day.13 These statistics illustrate that far fewer fishermen participate in either fishery on windy
13When calculating statistics for the stone crab fishery, I do not include days prior to the opening of the stone

crab season, which necessarily have zero participation. As a result, the average participation rate shown in Table 2
(7.08%) is larger than the percentage of choice occasions on which individuals chose to fish for stone crab shown in
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Table 2: Summary Statistics of Daily Participation Rates

Lobster Stone Crab

Mean Standard Mean Standard
Variable (%) Deviation (%) Deviation

Panel A: Participation-Specific Variables

All days 17.50 13.05 7.08 4.49

Weekdays 19.26 13.40 7.76 4.54
Saturdays 15.91 12.00 6.49 3.99
Sundays 9.98 8.64 4.12 3.24

Wind speed, low 21.41 13.20 8.44 4.37
Wind speed, moderate 12.36 9.78 5.92 4.03
Wind speed, high 6.94 6.76 3.84 3.29

Panel B: Location-Specific Variables

Area 1: Revenue, low 3.60 3.10 1.93 1.38
Revenue, high 5.60 3.95 2.27 1.62

Area 2: Revenue, low 1.37 1.11 0.11 0.21
Revenue, high 1.53 1.52 0.20 0.36

Area 3: Revenue, low 0.43 0.75 1.12 0.96
Revenue, high 0.48 0.67 1.46 1.04

Area 4: Revenue, low 2.77 2.78 0.50 0.48
Revenue, high 4.83 3.61 0.74 0.82

Area 5: Revenue, low 7.15 5.38 2.85 2.01
Revenue, high 11.93 6.41 4.15 2.70

days and on weekends, particularly Sundays. Visitations to each fishing location are also higher

when expected revenues are above average.

I compare the three-dimensional model to one that omits the species target decision. In par-

ticular, I classify decisions to fish for stone crab as non-participation, drop stone crab alternatives

from the choice set, and collapse the choice structure to two dimensions, p ∈ {no, lobster} and

j ∈ {0, 1, 2, 3, 4, 5}. Implicitly, this restricts utilities associated with non-participation and utilities

associated with stone crab fishing to be equal, which is accomplished by making non-participation

and stone crab alternatives observationally equivalent – i.e. setting Z to zero for stone crab alter-

natives – and constraining the parameters of (10) to be equal for non-participation and stone crab

alternatives. The structure of this “naive” model is also illustrated in Figure 1.

State Dependence

Table 1 (4.99%).
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In addition to day t characteristics, fishermen’s past choices may influence their present choices.

For example, there may be costs to switching between participation and non-participation or between

fisheries. To investigate whether state dependence mitigates or exacerbates differences between

models, I estimate the following augmeted version of (10)

Upsjit = αpsj +Xitβp + Zpsjitγ + δpsypsit−1 + ε̃psjit, (10′)

where ypsit−1 = 1 if fisherman i chose an alternative in subset Jps on choice occasion t− 1 and zero

otherwise, and δps captures the effect of the previous day’s choice on utility. Thus, utility depends

on the previous day’s choice at the species-level (but not the location-level), and the effect of this

choice is allowed to differ across species.14

III.C Results

Table 3 presents estimates of parameters and marginal effects. The signs of coefficient estimates

(Panel A) are the same in both models and are consistent with the summary statistics shown in

Table 2. Fishermen are less likely to participate on windy days and on weekends, less likely to choose

alternatives that are far from port, and more likely to choose alternatives with greater expected

revenue.

To compare magnitudes of effects across models, I present marginal effects in Panel B. I evaluate

marginal effects for a weekday in November 1998 with low wind speed (< 15 mph), mean alternative-

specific revenues, and modal location-specific distances.15 In these calculations, I sum probabilities

over all lobster alternatives, so marginal effects report changes in the probability of fishing for lobster

in any location. For example, the true model suggests that fishermen are 11% less likely to fish

for lobster on Sundays, and the naive model suggests that fishermen are 14% less likely. Marginal

effects for alternative-specific variables report changes in probabilities associated with a one-unit

increase in the variable across all lobster alternatives. For example, the true model suggests that
14In addition to this model, I have evaluated a number of alternative specifications of state dependence. Results

are qualitatively similar and are available upon request.
15In particular, I set lobster revenues to 4.25, 7.03, 4.43, 4.2, and 3.14 dollars per trap and stone crab revenues to

3.24, 4.66, 2.66, 2.47, and 2.77 dollars per trap for Areas 1, 2, 3, 4, and 5, respectively. I set distances to reflect the
distances that an individual from the modal zip code, 33050, must travel to reach each area. These distances are 0,
57, 25, 37, and 3 miles for Areas 1, 2, 3, 4, and 5, respectively.
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Table 3: Estimates of Parameters and Marginal Effects

True Model Naive Model

Standard Standard Percent
Variable Estimate Error Estimate Error Difference

Panel A: Coefficients

Wind speed, moderate (0,1) -0.545 0.0005 -0.487 0.0005
Wind speed, high (0,1) -1.321 0.0017 -1.269 0.0019
Saturday (0,1) -0.280 0.0007 -0.273 0.0008
Sunday (0,1) -0.841 0.0009 -0.821 0.0010
Distance (miles) -0.019 0.0000 -0.010 0.0000
Revenue ($/trap) 0.012 0.0000 0.001 0.0000

Panel B: Marginal Effects

Wind speed, moderate (0,1) -7.540 0.3050 -9.058 0.4397 20.14
Wind speed, high (0,1) -15.726 0.4744 -19.011 0.6631 20.89
Saturday (0,1) -4.018 0.3827 -5.352 0.5333 33.20
Sunday (0,1) -11.066 0.3959 -13.980 0.5418 26.33
Distance (miles) -0.585 0.0429 -0.206 0.0141 -64.76
Revenue ($/trap) 0.365 0.0572 0.024 0.0160 -93.30

Panel C: Dissimilarity Parameters

λfish 0.463 0.0033
λlobster 0.359 0.0001 0.189 0.0001 -47.36
λcrab 0.448 0.0002

Note.— I cluster standard errors at the calendar date level, and I calculate standard errors of marginal
effects using the delta method.
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Table 4: Error Variances

Dimension of Choice

Model Participation (p) Species Target (s) Location (j)

Three-Dimensional var(εp) =
π2

6

[
1− λ2p

]
var(εps) =

π2

6

[
λ2p − λ2ps

]
var(εpsj) =

π2

6 λ
2
ps

Two-Dimensional var(εp) =
π2

6

[
1− λ2p

]
var(εpj) =

π2

6 λ
2
p

Note.— Formulas for the variances of error components are based on a normalization of λ to 1.

fishermen are 0.6% less likely to fish for lobster when all lobster locations become 1 mile farther

from port, and the naive model suggests that fishermen are 0.2% less likely. To aid comparison

across models, the last column in Table 3 reports the percent difference in the absolute value of

marginal effects across models. These differences are large, particularly for distance and revenue.

Panel C reports estimates of scale parameters, or “dissimilarity parameters”, which describe the

variances of error components.16 Formulas for these variances are given in Table 4, where λp ∈ [0, 1]

and λps ∈ [0, λp].17 In this context, participation is implied when referring to lobster or stone

crab alternatives, so for simplicity I refer to λps as λs when discussing scale parameters of the

true model. In both models, λlobster describes the relative importance of idiosyncratic shocks to

utilities associated with lobster fishing. As λlobster approaches 1, the variances of error components

common to all lobster alternatives approach 0, and the correlation among lobster utilities approaches

0.18 Conversely, as λlobster approaches 0, the variance of the idiosyncratic component approaches

0, and the correlation among lobster utilities becomes relatively large. Generally, the larger is the

correlation, the greater is the substitutability and the propensity to select another lobster alternative

when one is removed from the choice set. Although estimates of λlobster are quite small in both

models, the estimate is much smaller in the naive model, suggesting that lobster alternatives are

characterized as better substitutes for one another in this model.
16Scale parameters are identified if the associated decision node contains more than one option. For example,

because the decision to not participate reduces the choice set to a single option, in the naive model, we cannot
distinguish the variance of the common shock (εno) from the variance of the idiosyncratic shock (εno,0), and λno is
not identified. The same is true of λno and λneither in the true model.

17Kling and Herriges (1995), Herriges and Kling (1996), and Gil-Molto and Hole (2004) provide conditions under
which λp > 1 and λps > λp are consistent with utility maximizing behavior.

18In the extreme case where λlobster = 1 in the naive model, only idiosyncratic components remain, and nested
logit reduces to multinomial logit. The same is true in the true model when λfish = λlobster = λcrab = 1.
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Two additional scale parameters are estimated in the true model: λcrab, which has an interpre-

tation analogous to λlobster, and λfish, which describes the relative importance of shocks common to

both lobster and stone crab alternatives. As λfish approaches 1, the variance of the error component

common to both species approaches 0, and the correlation in utilities across species approaches 0.

The estimated value of λfish is quite small, suggesting that shocks common to all fishing alterna-

tives are relatively large. Given that the naive model constrains correlation between lobster and

stone crab utilities to zero, this result suggests that the naive model may be a particularly poor

characterization of the choice environment studied here.

To determine whether differences in estimates produce meaningful differences in policy forecasts,

I conduct several simulations. I simulate the effect of closing each of the five fishing locations

to the lobster fishery only (“partial” closure) and to both fisheries (“complete” closure). Table 5

presents predicted changes in the number of lobster trips made to each location in response to area

closures. Because stone crab alternatives are not explicitly modeled in the naive model, partial and

complete closures are indistinguishable. Consequently, I present one set of forecasts for the naive

model. When an alternative is removed from the choice set, the probability of selecting each of the

remaining alternatives increases. Hence, both models predict an increase in the number of lobster

trips made to each non-closed area. However, predicted magnitudes of these responses differ across

models. For example, on almost 50,000 occasions, individuals choose to fish for lobster in Area 1.

When this area is closed to the lobster fishery only, the true model forecasts that on almost 30,000

of these occasions, individuals will choose to fish for lobster in another location. Hence, closing Area

1 leads to a decrease of almost 20,000 lobster trips or roughly a 42% reduction in overall lobster

effort. In contrast, the naive model forecasts a decrease of fewer than 9,000 lobster trips or roughly

an 18% reduction in effort. Results are similar in each area closure simulation: the naive model

predicts a decline in the number of lobster trips that is 21− 27 percentage points smaller than the

decline predicted by the true model. These differences are substantial and are due, in large part, to

differences in the estimated value of λlobster.

As more alternatives are removed from the choice set, the probability of selecting each of the
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Table 5: Marine Reserve Simulations

Predicted Change in the Number of Lobster Trips

Simulation Area 1 Area 2 Area 3 Area 4 Area 5 Total

Close Area 1
True Model, Partial -47,434 7,947 1,794 1,592 16,395 -19,706
True Model, Complete -47,434 9,890 2,221 2,041 20,357 -12,924
Naive Model -48,123 11,759 2,669 2,149 23,099 -8,446

Close Area 2
True Model, Partial 6,536 -16,956 629 220 2,735 -6,837
True Model, Complete 6,844 -16,956 659 234 2,885 -6,334
Naive Model 9,200 -17,047 891 298 3,822 -2,836

Close Area 3
True Model, Partial 1,221 497 -4,929 144 1,306 -1,763
True Model, Complete 2,563 1,057 -4,929 361 2,879 1,931
Naive Model 1,675 677 -5,019 186 1,752 -728

Close Area 4
True Model, Partial 1,814 222 206 -35,375 15,537 -17,596
True Model, Complete 2,001 247 228 -35,375 17,241 -15,658
Naive Model 2,571 304 296 -34,840 23,601 -8,069

Close Area 5
True Model, Partial 23,487 3,382 2,431 14,145 -82,194 -38,750
True Model, Complete 28,890 4,163 3,006 18,137 -82,194 -27,999
Naive Model 35,742 4,972 3,737 20,552 -81,769 -16,767

Predicted Trips
True Model 47,434 16,956 4,929 35,375 82,194 186,889
Naive Model 48,123 17,047 5,019 34,840 81,769 186,798

Observed Trips 45,852 15,992 4,788 37,840 82,326 186,798
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remaining alternatives gets larger. Hence, for the true model, predicted increases in the number of

lobster trips made to each non-closed area are larger under complete closures. Differences in pre-

dictions from partial and complete closures are particularly striking when Area 3 is closed. When

this area is closed to the lobster fishery only, the true model necessarily predicts a decrease in total

lobster trips. When this area is closed to both fisheries, however, the true model predicts an overall

increase in total lobster trips. This reversal in sign is a consequence of the initial distribution of

effort across species and locations. Area 3 is the least popular lobster destination and the third

most popular stone crab destination (see Table 1). This, combined with the fact that lobster fishing

is seen as a better substitute for stone fishing than non-participation (λ̂fish << 1), means that

much of the effort displaced from the stone crab fishery as a result of the area closure is reallocated

to lobster fishing in other areas. Because the naive model does not explicitly consider stone crab

alternatives, it cannot capture this behavior and is constrained to predict only a decrease in overall

lobster effort.

State Dependence

Tables 6 and 7 provide results, analogous to those provided in Tables 3 and 5, from the models

with state dependence. I evaluate marginal effects under two scenarios. In Panel B of Table 6, I set

the value of initial conditions and states to zero for all alternatives. This scenario approximates a

situation in which individuals have no history with alternatives; their decisions depend only on the

independent variables on day t. This scenario allows for a direct comparison of the marginal effects

of these independent variables with those of the main models, shown in Table 3. In Panel C, I set

the value of initial conditions to zero and the value of species-specific states to the sample “average”

for each species-level group of alternatives (lobster, stone crab, and neither). I define the sample

average for a particular group of alternatives as the fraction of times that species was selected

in the entire sample. In this scenario, the marginal effects represent the effects of independent

variables for a typical fisherman on a typical day at a point far enough into the season that the

effects of initial conditions have dissipated. For brevity, I only report coefficient and marginal effects

estimates of δlobster. Results indicate that there is significant correlation between today’s choice and
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Table 6: Estimates of Parameters and Marginal Effects of Models with State Dependence

True Model Naive Model

Standard Standard Percent
Variable Estimate Error Estimate Error Difference

Panel A: Coefficients

Wind speed, moderate (0,1) -0.506 0.0004 -0.458 0.0005
Wind speed, high (0,1) -1.232 0.0015 -1.195 0.0017
Saturday (0,1) -0.350 0.0006 -0.331 0.0006
Sunday (0,1) -0.877 0.0008 -0.848 0.0009
Distance (miles) -0.014 0.0000 -0.007 0.0000
Revenue ($/trap) 0.004 0.0000 -0.000 0.0000
State Dependence (0− 1) 0.345 0.0008 0.731 0.6917

Panel B: Marginal Effects with State Dependence = 0

Wind speed, moderate (0,1) -8.384 0.3376 -8.803 3.5043 5.00
Wind speed, high (0,1) -18.749 0.5466 -18.833 9.0490 0.45
Saturday (0,1) -5.839 0.4021 -6.543 2.4890 12.05
Sunday (0,1) -14.033 0.4600 -14.725 6.5710 4.93
Distance (miles) -0.421 0.0217 -0.147 0.0490 -65.09
Revenue ($/trap) 0.118 0.0302 -0.003 0.0108 sign change
State Dependence (0− 1) 10.521 0.4003 15.526 12.6575 47.57

Panel C: Marginal Effects with State Dependence > 0

Wind speed, moderate (0,1) -6.639 0.2844 -6.828 0.3437 2.84
Wind speed, high (0,1) -13.360 0.4332 -14.047 0.5120 5.14
Saturday (0,1) -4.754 0.3306 -5.121 0.3830 7.72
Sunday (0,1) -10.477 0.3780 -11.158 0.4390 6.50
Distance (miles) -0.300 0.0140 -0.118 0.0105 -60.56
Revenue ($/trap) 0.084 0.0213 -0.003 0.0087 sign change
State Dependence (0− 1) 7.484 0.3913 12.480 14.2026 66.75

Panel D: Dissimilarity Parameters

λfish 0.594 0.0017
λlobster 0.263 0.0001 0.132 0.0001 -49.72
λcrab 0.314 0.0001

yesterday’s choice. The true model with state dependence suggests that fishermen are 10.5% more

likely to go lobster fishing if they went lobster fishing yesterday, compared to a situation in which

they have no history with any of the alternatives. The estimated effect is much larger in the naive

model. Parameter and marginal effects estimates for the remaining variables are qualitatively similar

across models with and without state dependence. However, there are some notable differences.

First, the effect of revenue in the naive model is now negative (although small and statistically

insignificant). Second, differences in the magnitudes of marginal effects of participation-specific

variables are smaller. Third, estimated marginal effects of revenue and distance are smaller in
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Table 7: Marine Reserve Simulations of Models with State Dependence

Predicted Change in the Number of Lobster Trips

Simulation Area 1 Area 2 Area 3 Area 4 Area 5 Total

Close Area 1
True Model, Patrial -45,624 9,973 1,739 1,327 19,509 -13,077
True Model, Complete -45,624 10,809 1,881 1,459 21,125 -10,350
Naive Model -46,653 12,502 2,595 1,988 24,394 -5,175

Close Area 2
True Model, Patrial 7,862 -15,631 556 154 2,785 -4,273
True Model, Complete 7,967 -15,631 564 154 2,819 -4,127
Naive Model 9,829 -16,215 852 257 3,793 -1,485

Close Area 3
True Model, Patrial 1,205 460 -3,995 94 1,267 -969
True Model, Complete 1,660 642 -3,995 142 1,824 271
Naive Model 1,668 641 -4,227 159 1,680 -78

Close Area 4
True Model, Patrial 1,626 180 161 -33,339 18,725 -12,647
True Model, Complete 1,654 184 166 -33,339 19,306 -12,029
Naive Model 2,439 250 250 -33,472 24,915 -5,618

Close Area 5
True Model, Patrial 31,276 3,461 2,461 16,642 -82,705 -28,867
True Model, Complete 33,564 3,677 2,641 18,411 -82,705 -24,412
Naive Model 37,980 4,874 3,567 21,201 -80,106 -12,483

Predicted Trips
True Model 45,624 15,631 3,995 33,339 82,705 181,294
Naive Model 46,653 16,215 4,227 33,472 80,106 180,672

Observed Trips 45,852 15,992 4,788 37,840 82,326 186,798

magnitude in both models, suggesting that unobservables play a relatively larger role in selection

among alternatives within species. Finally, estimates of λlobster and λcrab are smaller in magnitude

both models, suggesting that alternatives within species are viewed as closer substitutes.

Policy simulations are shown in Table 7. They display the same pattern of behavior as those of

the main models.19 The naive model predicts much smaller decreases in lobster effort than the true

model when Areas 1, 2, 4, and 5 are closed, and the true model predicts an increase in lobster effort
19Predictions are made using simulated rather than observed choices to calculate states, which I generate with

the following iterative procedure. First, I calculate individual- and alternative-specific choice probabilities for the
first day of each lobster season. I use a uniform(0,1) random number generator to select an alternative for each
individual based on the model’s predicted choice probabilities. Using this simulated choice, I construct individual-
and alternative-specific states for the second day of each lobster season. Using these state variables, I calculate
individual- and alternative-specific choice probabilities for the second day. I continue in this fashion until choice
probabilities have been calculated for each day in each season. I repeat this exercise 100 times for each model (and
each policy simulation) and report average predictions.
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when Area 3 is closed to both fisheries, although the magnitude is smaller. A notable difference

between the predictions in Tables 5 and 7 is the magnitude of responses to area closures. Overall,

there is much higher substitution among lobster alternatives such that the impact of area closures

on total lobster effort is, on average, 30% smaller for the true model and 44% smaller for the naive

model. These results suggest that state dependence is an important dimension of the choice problem

that should be carefully considered. Yet, the inclusion of state dependence does not affect the main

conclusion that parameter estimates and policy predictions for the lobster fishery depend heavily

upon whether stone crab alternatives are combined with fishermen’s outside option.

Tables 5 and 7 illustrate that “true” and “naive” models lead to very different policy forecasts

when applied to the Florida spiny lobster and stone crab fisheries. The naive model substantially

under-predicts the decline in total lobster trips taken when areas are closed to the lobster fishery

only, and when areas are closed to both fisheries, predicted changes in total lobster trips can differ

on sign. These results demonstrate that the model misspecification addressed in this paper is

of practical importance in the Florida spiny lobster fishery. An important unanswered question,

however, is whether one should expect similar biases in other settings. I address this question next.

IV Monte Carlo Experiments

To evaluate the sensitivity of results to the empirical environment, I conduct a number of Monte

Carlo experiments. In each experiment, I generate data on attributes and choices that are consis-

tent with the three-dimensional nested logit model described in section II.A. Next, I estimate the

misspecified two-dimensional nested logit described in section II.B on the generated data. Lastly,

I simulate the effect of area closures and compare predictions of the misspecified model with pre-

dictions of the true model. In these experiments, I vary aspects of the empirical environment and

evaluate the extent to which these variations influence the results. This exercise demonstrates that

it is difficult to make general statements about the effect of model misspecification on estimates

and policy forecasts. Under some conditions, the misspecified model generates predictions that

differ only slightly from the true model. Under other conditions, differences in predictions are ex-

tremely large. Furthermore, the empirical setting affects whether the misspecified model over- or
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under-predicts policy responses. In this section, I discuss and present results from a subset of these

experiments that illustrate these findings.

In these experiments, I consider a simplified version of the empirical model described in section

III.B. On each choice occasion, individuals select one of five alternatives: fish for lobster in location

1 or 2; fish for stone crab in location 1 or 2; or fish for neither species, which I label non-participation.

Decisions are independent across individuals and time. Indexing alternatives by participation (p),

species (s), and location (j), the utility that individual i receives from selecting alternative psj on

choice occasion t is a function of an alternative-specific constant, wind speed, alternative-specific

revenue, and an alternative-specific component that is unobserved by the researcher:

Upsjit = αpsj +Witβ
W
p +Rpsjitβ

R + ε̃psjit. (11)

Following the empirical application in section III, I allow wind speed to affect utilities associated

with participation differently than utilities associated with non-participation, and I normalize βWno

to 0. Unobserved components, ε̃psjit, meet the requirements laid out in section II.A, and I normalize

λ to 1. In each experiment, I set values for α, β, and λ and draw 10,000 values of W and Rpsj .

This process is discussed in detail below. For each draw, I calculate choice probabilities according

to (3), (4), and (5) and select an alternative using draws from a uniform(0,1) random number

generator. I estimate the misspecified two-dimensional model, (9), on the generated data of choices

and attributes and replicate each experiment 500 times.

In the experiments presented here, I vary the data generating process to evaluate the sensitivity

of the results to three features of the empirical environment. The first feature that I study is the

relative importance of the stone crab fishery. Presumably, the model misspecification issue studied

here becomes less problematic as the frequency with which lobster fishermen participate in the stone

crab fishery decreases. The second feature that I study is the degree of spatial heterogeneity across

species. In particular, I vary the degree to which lobsters are favored in one location and stone crabs

in the other. This type of heterogeneity appears to be a key driver in forecast differences in the

empirical application. The third feature that I study is the degree of correlation in revenues among
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fishing alternatives. Presumably, as fishing utilities become more correlated, misclassifying stone

crab trips as non-participation becomes more problematic. Analysis of the first and second feature

requires varying α, and analysis of the third requires varying the data generating process for Rpsj .

The remaining parameters and data generating processes are held fixed throughout all experiments.

In particular, I set βWfish to −0.1 and βR to 0.1, I set λfish = λlobster = λcrab = 0.5, and, using

the empirical application as guidance, I draw values of Wit independently from a Weibull(2.1, 0.15)

distribution.

Given realizations ofW andRpsj and chosen values of β and λ, the values assigned to alternative-

specific constants, αpsj , determine the distribution of choices across alternatives, which in turn

determine the relative importance of the stone crab fishery and the degree of spatial heterogeneity.

LetNlobster, Ncrab, andNneither denote the fraction of times individuals choose to fish for lobster, fish

for stone crab, and fish for neither species, respectively. Similarly, letNsj denote the fraction of times

individuals choose to fish for species s in location j. In the baseline specification, I choose alternative-

specific constants such that Nneither = 0.5 and Nlobster1 = Nlobster2 = Ncrab1 = Ncrab2 = 0.125.20 To

evaluate the relative importance of the stone crab fishery, in one set of simulations I vary the values

of alternative-specific constants such that Nlobster1 and Nlobster2 remain fixed at baseline levels while

Nneither and Ncrab vary, subject to Ncrab1 = Ncrab2, so as not to introduce spatial heterogeneity at

this stage. At one extreme, utilities associated with stone crab fishing are so low that individuals

rarely select these alternatives (Nneither ≈ 0.75 and Ncrab ≈ 0). At the other extreme, utilities are

so large that individuals rarely choose non-participation (Nneither ≈ 0 and Ncrab ≈ 0.75).

To evaluate the effect of spatial heterogeneity, in a second set of simulations I vary the values

of alternative-specific constants such that Nlobster, Ncrab, and Nneither remain fixed at baseline

levels while each Nsj varies, subject to Nlobster1 = Ncrab2 and Nlobster2 = Ncrab1. At one extreme,

individuals rarely fish for lobster in location 1 and rarely fish for stone crab in location 2 (Nlobster1 =

Ncrab2 ≈ 0 and Nlobster2 = Ncrab1 ≈ 0.25). At the other, individuals rarely fish for lobster in location

2 and rarely fish for stone crab in location 1 (Nlobster1 = Ncrab2 ≈ 0.25 and Nlobster2 = Ncrab1 ≈ 0).
20To achieve this distribution, I set α0 = 0.53475 and all other alternative-specific constants to 0.
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Table 8: Monte Carlo Experiments – Distributions of Choice Outcomes Considered

Base Case Simulation 1 Simulation 2

Alternative Range Restriction Range Restriction Range

neither .500 .75− crab 0− .750 −fixed− .500
lobster .250 −fixed− .250 −fixed− .250
lobster1 .125 −fixed− .125 .25− lobster2 0− .250
lobster2 .125 −fixed− .125 .25− lobster1 0− .250

crab .250 .75− neither 0− .750 −fixed− .250
crab1 .125 crab/2 0− .375 lobster2 0− .250
crab2 .125 crab/2 0− .375 lobster1 0− .250

Note.— In the base case, values for alternative-specific constants are chosen such that individuals
choose neither species 50% of the time, lobster fishing 25% of the time, stone crab fishing 25% of
the time, and trips are divided equally between Areas 1 and 2. In Simulation 1, I examine the
importance of the secondary species by varying the distribution of choice outcomes between neither
and crab, while holding lobster trips and the number of trips between areas equal. In Simulation 2,
I examine the role of spatial heterogeneity by varying the distribution of choice outcomes between
Areas 1 and 2.

Table 8 provides the ranges of choice outcomes that are considered in each set of simulations.

For both sets of simulations described above, I consider two data generating processes for

revenues. In the first, I draw values of Rpsjit for each fishing alternative independently from

a Gamma(4, 1) distribution. In the second, I draw five vectors of revenues. The first four are

i.i.d. Gamma(1, 1), and the fifth is i.i.d. Gamma(3, 1). I add the fifth vector to each of the first

four, generating four Gamma(4,1) vectors with a correlation of 0.75. In all specifications, revenues

for non-participation are set to zero.

Figure 2 presents estimates of λlobster, βR, and βWfish. True values are illustrated by solid lines

and estimates by dashed lines. The importance of stone crab fishing to the choice environment (left

column) has a large influence on the extent to which estimates from the misspecified model differ

from true values. When utilities from stone crab fishing are very low such that few stone crab trips

are made, few choice occasions are misclassified by the two-dimensional model, which minimizes

the effect of misspecification and the difference between estimates and true values. When stone

crab utilities become large, however, the number of misclassified choice occasions grows and so does

the difference between estimates and true values. Heterogeneity across space (right column), on

the other hand, has little influence on the extent to which estimates differ from true values. This

is, perhaps, not surprising given that the number of misclassified choice occasions and the level
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Figure 2: Monte Carlo Experiments – Parameter Estimates

Note.— Results from Simulation 1 are presented in the left column, and results from Simulation 2 are
presented in the right column. I replicate each experiment 500 times and present mean results here. Solid
lines illustrate true parameter values, long-dashed lines illustrate estimates from the misspecified model when
revenues are uncorrelated, and short-dashed lines illustrate estimates when revenues are correlated.
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of correlation between lobster and stone crab alternatives does not vary with this type of spatial

heterogeneity.

When revenues are correlated (short-dashed lines), the misspecified model under-estimates

λlobster, βR, and the marginal effect of revenue (not shown). The reason for this is as follows.

When revenues share a common component, on some occasions, revenues are high for all fishing

alternatives, and individuals choose to fish for stone crab. In the misspecified model, these choices

are classified as non-participation, making it appear as if the effect of revenues on utility is smaller

than it actually is. This dampened effect of revenues applies to choice among lobster alternatives as

well. To reconcile why individuals select the high-revenue lobster alternative as often as observed,

the misspecified model apportions more of unobserved utility to the common component and less to

the idiosyncratic component. Hence, λlobster and βR are under-estimated. The larger is the correla-

tion in revenues across species, the larger will be the bias in estimates. In the empirical application,

lobster and stone crab revenues are highly correlated, which may explain why λlobster and βR are

under-estimated in that setting as well.

Figure 3 presents predicted percent changes in the number of lobster trips taken as a consequence

of closing Area 2. What is clear from this figure is that the relationship between actual and predicted

changes in lobster trips is heavily dependent on the empirical environment. For example, when

revenues are uncorrelated (top row) and Area 2 is closed only to the lobster fishery (short-dashed

lines), the misspecified model (solid lines) does a reasonably good job predicting the change in lobster

trips, regardless of the initial percentage of stone crab trips (left) or the initial distribution of effort

across locations (right). When Area 2 is closed to both fisheries (long-dashed lines), however, the

misspecified model does poorly, particularly when the total number of stone crab trips or the number

of stone crab trips taken to Area 2 is initially large. When revenues are correlated (bottom row),

results change significantly. Interestingly, when the percentage of lobster trips to Area 1 and the

percentage of stone crab trips to Area 2 are relatively low, the misspecified model under-predicts

the decline in lobster trips. This mirrors the results in the empirical application when Areas 1, 2, 4,

and 5 – areas that are more popular for lobster fishing than for stone crab fishing – are closed (see
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Table 5). However, when the percentage of lobster trips to Area 1 and the percentage of stone crab

trips to Area 2 are relatively high, the misspecified model over-predicts the decline in lobster trips

when Area 2 is closed to both fisheries. This mirrors the results in the empirical application when

Area 3 – an area that is more popular for stone crab fishing than for lobster fishing – is closed.

In summary, Figures 2 and 3 demonstrate that both the direction and magnitude of the bias

in estimates and predictions are heavily dependent on the empirical environment. While many

of the results discussed here are intuitive, relationships between characteristics of the empirical

environment – such as the level of spatial heterogeneity and correlation in revenues – are complex,

and it is not straight-forward to predict how combinations of characteristics will affect estimates

and predictions.

V Discussion

In this paper, I examine how pooling secondary species alternatives with non-fishery participation

affects estimates and policy predictions of discrete choice models of participation and location

decisions in a single commercial fishery. Both an empirical application and Monte Carlo experiments

demonstrate that biases in estimates and predictions can be large. Moreover, the experiments

demonstrate that both the direction and magnitude of biases are heavily dependent on the empirical

environment. In some cases, the direction and magnitude of biases are relatively intuitive and

predictable. For example, biases are relatively small when secondary species play a minor role in

individuals’ daily decisions and when secondary species share little in common with the primary

species. Nevertheless, even in these cases, biases exist, and forecasting directions and magnitudes

of biases becomes challenging as different aspects of the empirical environment – such as spatial

heterogeneity – interact with these biases in nontrivial ways. As a result, it is not possible to make

general statements about the signs of biases; under some conditions, the misspecified model over-

predicts marginal effects and policy responses, and in others it under-predicts them. The evidence

from this paper suggests that researchers should explicitly model as many alternatives that are

relevant to the alternatives of interest as possible and proceed with caution in determining what

can be safely relegated to a generic outside option.
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Regarding the empirical application, I demonstrate that modeling the species target decision

is quantitatively important in understanding how the growing use of spatial policies to manage

fisheries will affect fishing pressure and the distribution of effort across space. Marine protected

areas (MPAs), which typically restrict or prohibit commercial fishing, are an ever-growing tool

for ecosystem management. An executive order signed by President Clinton in 2000 called for

“strengthening and expanding the Nation’s system of marine protected areas” (Executive Order

13158), and, according to the U.S. National Oceanic and Atmospheric Administration (NOAA),

MPAs now cover more than 41% of U.S. marine waters. Supporters advocate that MPAs have the

potential to improve ecosystems and even fisheries by creating safe havens for exploited areas to

recover and repopulate non-protected areas. However, these favorable forecasts are often based on

models that make unrealistic assumptions about the behavior of fishermen, and a number of studies

have shown that benefits from MPAs decrease once assumptions about behavior are made more

realistic.21 This study adds to that literature.

A particularly striking finding is that, in some cases, closing an area to all fisheries can result in

an increase in overall lobster fishing effort. Such a result is precluded from a model that includes

fishing for secondary species in the outside option. When an area is closed only to lobster fishing,

failing to model the species target decision results in significantly under-predicting the decrease

in lobster fishing effort. Together, these results suggest that researchers and policy-makers should

explicitly consider species choice when considering fisheries management policies, even when their

primary interest lies with one particular species. This is particularly true in the present context.

The Florida spiny lobster and stone crab fisheries are not subject to annual catch limits so no safety

net exists to protect these fisheries from overfishing should the regulator miscalculate the behavioral

response of fishermen.

Although not studied here, the species target decision is also important for understanding how

regulatory policies will affect by-catch. In a retrospective study, Abbott and Haynie (2012) shows

that the creation of two MPAs in the U.S. Eastern Bering Sea that were designed to reduce the
21See, e.g., Smith and Wilen (2003).
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by-catch of red king crab had the unintended consequence of increasing the by-catch of halibut

as fishermen switched target species in response to the area closures. Had policy makers modeled

the species target decision, this switching behavior may have been foreseen and this unintended

consequence avoided. Modeling the species target decision will become more important as climate

change affects the distribution of species across space and fishermen adapt targeting behavior in

response.

Although this paper focuses on commercial fisheries, the type of model misspecification studied

here is not limited to this application. Closely related are models of recreational fishing effort. For

example, Morey, Rowe and Watson (1993), Morey and Waldman (1998), and Abbott and Fenichel

(2013) study participation and location decisions of recreational fishermen in the New England

Atlantic salmon fishery, the Montana trout fishery, and the Great Lakes trout and salmon fisheries,

respectively. A number of species are abundant in these waters, including bass, burbot, perch, pike,

salmon, trout, walleye, and whitefish. Thus, it is quite conceivable that many of the individuals

studied in these papers face a species target choice similar to that studied in this paper.

Another closely related branch of literature is the valuation of environmental resources using

estimates of outdoor recreation demand, such as Lew and Larson (2008) and Kuriyama, Hanemann

and Hilger (2010) for beaches and Egan et al. (2009) and von Haefen (2003) for lakes. In such

contexts, as with the species choice in fisheries, there are likely to be several alternatives (for

example, visiting a water park) that are both more closely substitutable with recreation demand at

these sites than other outside options and whose demand is a function of similar variables, such as

travel costs and weather.

Many other examples exist across the social sciences. For example, in their well-known analysis

of the U.S. market for new automobiles, Berry, Levinsohn and Pakes (1995) note that individuals’

outside option, as characterized in their model, is often simply purchasing a used car. In a study on

doctors’ choice among stent products to treat coronary artery disease, Grennan (2013) combines no

treatment with all non-stent treatments, such as coronary artery bypass surgery, to form the outside

option. Other examples can be found in health (e.g. Chernew et al. (2004) on insurance choice and
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Bonnet and Requillart (2011) on soft drink consumption), in energy (e.g. Allcott and Wozny (2014)

and Huse and Lucinda (2014) on automobile purchases), and in housing (e.g. Bayer et al. (2016)

on neighborhood choice and Geyer and Sieg (2013) on public housing communities). In each case,

the outside option includes alternatives of varying substitutability with the alternatives of interest.

Evaluating the practical importance of relegating related alternatives to a generic outside option in

other applications and further exploring these issues theoretically are potentially fruitful and useful

avenues for further research.
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